Fundamental Solutions for the Tricomi Operator, Ii

نویسنده

  • J. BARROS-NETO
چکیده

In this paper we explicitly calculate fundamental solutions for the Tricomi operator, relative to an arbitrary point in the plane, and show that all such fundamental solutions originate from the hypergeometric function F(1/6, 1/6; 1; ζ ) that is obtained when we look for homogeneous solutions to the reduced hyperbolic Tricomi equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fundamental Solutions for the Tricomi Operator, Ii

In this paper we explicitly calculate fundamental solutions for the Tricomi operator, relative to an arbitrary point in the plane, and show that all such fundamental solutions originate from the hypergeometric function F (1/6, 1/6; 1; ζ) that is obtained when we look for homogeneous solutions to the reduced hyperbolic Tricomi equation.

متن کامل

J an 2 00 1 Bessel Integrals and Fundamental Solutions for a

The method of partial Fourier transform is used to find explicit formulas for two remarkable fundamental solutions for a generalized Tricomi operator. These fundamental solutions reflect clearly the mixed type of the Tricomi operator. In proving these results, we establish explicit formulas for Fourier transforms of some functions involving Bessel functions.

متن کامل

O ct 2 00 3 Hypergeometric functions and the Tricomi operator

In this paper we show how certain hypergeometric functions play an important role in finding fundamental solutions for a generalized Tricomi operator.

متن کامل

Energy Inequalities for a Model of Wave Propagation in Cold Plasma

Energy inequalities are derived for an elliptic-hyperbolic operator arising in plasma physics. These inequalities imply the existence of distribution and weak solutions to various closed boundary-value problems. An existence theorem is proven for a related class of Keldysh equations, and the failure of expected methods for obtaining uniqueness is discussed. The proofs use ideas recently introdu...

متن کامل

Mixed Type Partial Differential Equations With Initial and Boundary Values in Fluid Mechanics

This paper includes various parts of the theory of mixed type partial differential equations with initial and boundary conditions in fluid mechanics ,such as: The classical dynamical equation of mixed type due to Chaplygin (1904), regularity of solutions in the sense of Tricomi (1923) and in brief his fundamental idea leading to singular integral equations, and the new mixed type boundary value...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002